Debugging MaplInfo .Net Programs
with Visual Studio 2008 or Visual
Studio 2008 Express Edition

by Nathan Woodrow

This article will hopefully explain how to attach the Visual Studio debugger to an instance of
Maplnfo Professional 9.5 to allow you to debug a .NET application invoked from a MapBasic
application.

NOTE! So far | have only tested the following steps with C# and VB .NET using Visual
Studio 2008. The same basic principles should work in Visual Studio 2005 though it has not
been tested

Step 1: Create Visual Studio Project

The first step is to create a new Visual Studio project. For the following examples we will be
creating a Visual Basic Class Library as shown here:

Project types: Templates: [{NET Framework 3.5 T l =

Visual Basic Visual Studic installed templates

x::bd ow's _;‘E E‘E I_LYE’

Smart Device Windows CIasslerary WPF WPF Browser Conscle Empty
Office Forms Ap... Application Application Application Project

Database

D¥Core _E IEVE, _E

Reporting Windows WPF Custom WPF User Windows
Test Service Control Lib.. Centrol... Forms ...
WCF

Worlkflow My Templates

Spec # Projects
Visual F# !
Other Languages S_earch

Other Project Types Online Te...
Test Projects

A project for creating a VB class library (.dIl) (. MET Framework 3.5)

Mame: MapinfoDebugTest

Cancel

The reason for choosing a Visual Basic class library (dll) is that we do not want our
application to be run by itself, but only to be invoked by a MapBasic application.

As soon as the project has been created, it should be saved so that Visual Studio can create
all of the necessary files and folders needed for the following steps.

Normally when creating a class library project, Visual Studio will not allow it to be run when
4

clicking the debug button: Doing so will produce error like this:
Microsoft Visual Studio =

I.-"'_"‘-.I A project with an Output Type of Class Library cannot be started
‘N¥ directly.

In order to debug this project, add an executable project to this sclution
which references the library project. Set the executable project as the

startup project.

In order to get around this problem, we would normally create or include an application
project in Visual Studio, create a reference to our class library and then set the application
project as the start-up project but because we are using Maplinfo, we are unable to add a
copy of it to Visual Studio.

In order for us to attach the Visual Studio debugger to our project and Maplnfo, we need to
make a few changes in the project settings page of our class library.

NOTE! This next part of this current step will be split into two different sections. One
for changing the settings in the full Visual Studio and the other for the Express
editions (VB Express and C# Express etc). You will only need to do one of the
following steps.

Step 1.1 Editing Settings for the Full Visual Studio

First we need to open the project settings page by going to Project->MapinfoDebugTest
Properties or you can use the keyboard shortcut Atl+P+P. Once the project properties
screen is up, click on the “Debug” tab. The screen should now look something like this.

Bl Bl Yew Fgen Fuid Debeg [t Tools Dedgesr Tep Yodew Help
Al G M= -] "3 |1 e i e N LT
5 - Sabgion Epderes E =
L MagintoDebuglient | Clmlak| Shan Page = ! -
5 E) 4
Apglicatian. ol Slutian ' MapslolebugTent’ (1
Configuration: | dotree |Debugl - Fiatarn: | datrer By CPL - 2 Mgl et
Comgile Py Freject
" -] Clmitst
3| | Debug e
; Refarancir I
= agtural programc
REcrinces " s
Shari brossar s b :
ki L
Seftings Sia Dphizra
Carerragd kre sgumesic
Sapreag o e
Py Exteasiaig 3 Solutiae Exglor G5 Clin Wi

Wierking dimoary
Urn remiate machine = T |
Frakie Desiagges

Enabie ynrearaged oz de desugging
Ervalie S04 Seved dkbeiginsg
¥ Enabie the Tosal Shudia hgiting pracen

Tendy

There are two settings on this form that will need to be changed but for now we will only be
changing one which is the one that looks like this:

Start Action

) Start project

(Start external program: C\Program Files\Maplnfo'\Professional\Maplnfow.e | ... }

Start browser with UEL:

This setting will need to be changed to the path of Mapinfow.exe which on most computers
is the same as above. Once you have edited this property, save.

Step 1.2 Edit Settings in Express Editions

In the Express Editions of Visual Studio, we are not able to just change a couple of options
in the project properties form like in the full Visual Studio. However with a little bit of xml
editing, we can achieve the same result.

In order to complete the next few steps, Visual Studio Express Edition must be closed. This
is to ensure that any manual edits to the configuration files are not overridden by the
program.

We will need to edit the project user settings xml file. This file is located in the same location
as where the project was saved. It will be named something like this:

&) Classl.vb 8/09/2008 4:23 PM Visual Basic Sourc..

S Sl Y T e 8/09/2008 3:34 PM Visual Basic Projec...
-

| 7| MapinfoDebugTestvbproj.user 8/00,/2008 3:34 PM USER File

-

After locating the file, it needs to be opened in a text editing program like Notepad (or
something like Notepad++ to get coloured syntax highlighting as shown below)

Once the file has been opened, it should contain a line similar to this:

Note the forward slash needs to be removed

<PropertyGroup Condition=""$(Configuration)|$(Platform)' == 'Debug|AnyCPU® <
in order to add to the property group
This is property group that holds all of the actions for the current type of build to be run for

the project. As we can see, this group is for debug build.
We will need to expand the property group and add the following code inside:

<StartAction>Program</StartAction>
<StartProgram>C:\Program Files\MapInfo\Professional\MapInfow.exe</StartProgram>

The “StartAction” tag just tells Visual Studio that a program will need to be started.
The “StartProgram” tag is the path to an executable that will run once the debugger is
launched.

In the end, the entire configuration file should look something like this:

<Project xmIns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup Condition=""$(Configuration)|$(Platform)' == 'Debug|AnyCPU' ">
<StartAction>Program</StartAction>
<StartProgram>C:\Program Files\MapInfo\Professional\Maplnfow.exe</StartProgram>
</PropertyGroup>
</Project>

Once we have made the changes to the file, we need to save & exit and launch Visual
Studio Express Edition once again.

Step 2: (Optional) Testing start application

Before going further, we can test the changes we have just made. If we close the settings
form and return to the code window and press the | B button, we should be presented
with the Maplinfo Pro splash screen. After Mapinfo has loaded, if we take a look at the
currently running processes in a program like Process Explorer you will notice that the
instance of Maplnfo is attached to Visual Studio:

= :I devenv exe 1592
5. Fsiexe 53g8
B Maplrfow exe M2

When we stop the debugger by clicking the blue stop button in Visual Studio, the instance of
Maplnfo attached to Visual Studio will also close.

Now that we have everything set up correctly, we can begin creating a simple application.

Step 3: Writing the Code to be Called

Once we are back in Visual Studio, we need to add some code to our Visual Basic Class
Library that our MapBasic application can call. We will add the following class:

Public Class DebugTest
Public Shared Sub ShowHelloWorld()
MsgBox("Hello World")
End Sub
End Class

Note that the method to be called needs to be declared as a “Shared” sub in order for the
MapBasic application to access it. For now we will save the class and move on to creating
our MapBasic application.

Step 4: Creating the Mapbasic Application

Here is an example of a simple MapBasic application that will call our .NET method.
Include "MapBasic.def"

Declare Sub Main()
Declare Method ShowHelloWorld Class "MapInfoDebugTest.DebugTest" Lib "MapinfoDebugTest.dll"

Sub Main()
Call ShowHelloWorld
End Sub

NOTE! The above code is explained in depth in the MapBasic user guide.

As you can see, it will just call the method without passing anything through to .NET.

We can now save & compile our MapBasic application.

Step 5: Debugging the Application

The final step in this article is debugging our application after we have called it from Maplnfo.

Now that we have created and linked everything, we are ready to start debugging our
application. In order to do so, we should head back into our Visual Studio project.

Before we run our application, we can set a breakpoint in our .NET code like so:

Public Shared Sub ShowHelloWorld()
MsgBox(“Hello World”),
End Sub

Once we have set our breakpoints in our code, we can go ahead and click on the debug
button: | b If everything has been set up correctly, Mapinfo should load and be attached
to the debugger. After Mapinfo has loaded, we can run the MapBasic application created
earlier.

After the MapBasic application has been run, it should call the .NET method and break in the
Visual Studio debugger. Now that we are attached to the Visual Studio debugger, we can do
anything we would normally be able to do in the debugger.

Have fun!

